Removal of chemical oxygen demand and dissolved nutrients by a sunken lawn infiltration system during intermittent storm events.

نویسندگان

  • Lizhu Hou
  • Huan Yang
  • Ming Li
چکیده

Urban surface water runoff typically contains high but varying amounts of organic matter and nutrients that require removal before reuse. Infiltration systems such as sunken lawns can improve water quality. However, there is currently insufficient information describing the treatment efficiency of lawn-based infiltration systems. In this study, novel sunken lawn infiltration systems (SLISs) were designed and their pollutant removal effectiveness was assessed. The results revealed that SLISs with Poa pratensis and Lolium perenne effectively removed most chemical oxygen demand (CODCr) and dissolved nutrients. Average CODCr, total nitrogen (TN), ammonium-nitrogen (NH4(+)-N) and total phosphorus (TP) concentrations were reduced by 78.93, 66.64, 71.86 and 75.83%, respectively, and the corresponding effluent concentrations met the standard for urban miscellaneous water consumption in China. The NH4(+)-N in the synthetic runoff was shown to be removed by adsorption during the stormwater dosing and nitrification during subsequent dry days, as well as through uptake by plants. Phosphorus was mainly removed by adsorption and chemical precipitation. The NH4(+)-N and phosphorus Langmuir isotherm model fitted the clay loam soil adsorption process better than the Freundlich model. Overall, these results indicate that an SLIS provides an alternative means of removing runoff pollutants owing to its efficiency, easy operation and maintenance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and optimization of oil refinery wastewater chemical oxygen demand removal in dissolved air flotation system by response surface methodology

In this present study the dissolved air flotation (DAF) system was investigated for the treatment of Kermanshah Oil Refinery wastewater. The effect of three parameters on flotation efficiency including of flow rate (outflow from the flotation tank), saturation pressure and coagulant dosage on chemical oxygen demand (COD) removal was examined experimentally. All the experiments were done under a...

متن کامل

Effect of Dissolved Oxygen and Chemical Oxygen Demand to Nitrogen Ratios on the Partial Nitrification/Denitrification Process in Moving bed Biofilm Reactors

Partial nitrification was reported to be technically feasible and economically favorable, especially for wastewaterwith high ammonium concentration or low C/N ratio. In this study, the effect of dissolved oxygen (DO)and influent ratio of chemical oxygen demand to nitrogen (COD/N) ratio on biological nitrogen removal fromsynthetic wastewater was investigated. Experiments were c...

متن کامل

Application of Typha Latifolica and Polygonum aviculare for Ahwaz Urban Wastewater Treatment

The purpose of this study was to evaluate the effect of phytoremediation on reduction of phosphate, nitrate, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of Ahwaz wastewater during 90 days. A completely randomized design with 4 treatments and 3 replications was used for this experiment. The plants of Typha Latifolica and seven grasses (Polygonum aviculare) were selected acco...

متن کامل

Evaluation of sequencing batch reactor performance for petrochemical wastewater treatment

Sequencing batch reactor (SBR) technology has found many applications in industrial wastewater treatment in recent years. The aim of this study was to determine the optimal time for a cycle of the sequencing batch reactor (SBR) and evaluate the performance of a SBR for petrochemical wastewater treatment in that cycle time. The reactor was operated with a suspended biomass configuration under ae...

متن کامل

Treatment of Real Paper-Recycling Wastewater in a Novel Hybrid Airlift Membrane Bioreactor (HAMBR) for Simultaneous Removal of Organic Matter and Nutrients

In this study, a novel integrated Hybrid Airlift Membrane Bioreactor (HAMBR) composed of oxic, anoxic, and anaerobic zones was developed to simultaneously remove organic matter and nitrogen from real paper-recycling wastewater. The removal efficiencies of Chemical Oxygen Demand (COD), ammonium, nitrite, nitrate and Total Nitrogen (TN) for permeate and supernatant were in the range of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Water science and technology : a journal of the International Association on Water Pollution Research

دوره 69 2  شماره 

صفحات  -

تاریخ انتشار 2014